Large language models usually give great answers, but because they're limited to the training data used to create the model, over time they can become incomplete--or worse, generate answers that are just plain wrong. One way of improving the LLM results is called "retrieval-augmented generation" or RAG. In this video, IBM Senior Research Scientist Marina Danilevsky explains the LLM/RAG framework and how this combination delivers two big advantages, namely: the model gets the most up-to-date and trustworthy facts, and you can see where the model got its info, lending more credibility to what it generates.